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we obtain that the condition for reversal of waves being propagated to the right ,j’C / 
dt > 0 is satisfied for n / 2 < 8 < 0” (2n - 8, < 0 ( 3n / 2) for fast plastic 

waves. Therefore, taking account of thermal effects results in the need to consider jumps 
in the plastic domain in contrast to the uncoupled model [S]. In those cases when the 

jump is of sufficiently small intensity, for example, if it originates because of reversal 
of the simple wave and 8, - n / 2 is small (this quantity is on the order of 10-a 
for steel), the relationships between the quantities in the appropriate simple wave can be 

used as approximate conditions on the jump, and the rate of propagation of the discon- 
tinuity can approximately be considered equal to the average of the values of the appro- 

priate characteristic velocities ahead of and behind the jump. 
The author is deeply grateful to A. G. Kullkovskii for valuable comments and to L. I. 

Sedov for useful discussion of the research. 
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The progress made in the theory of integration of equations of motion of holo- 
nomic systems naturally leads to attempts to extend the basic assumptions of 
this theory to nonholonomic systems, or at least to establish the conditions for 
their applicability to nonholonomic systems. Problems of this type were the 

subject of many papers by various authors. In particular, numerous attempts 

were made to extend the Hamilton-Jacobi method of integration to the nonho- 
lonomic systems (see [ 11). Below we discuss the problems relevant to the lat- 
ter problem. 



Hamilton-Jacobi method for nonholonomio system 1039 

1. The first attempt of generalizing the Hamilton-Jacobi method to cover the non- 
holonomic systems was made in [ 13. Assuming that the dif~rential constraints imposed 
on the system are linear, the author obtains the equations of motion in the form (*) 

where Ri are either zero or represent quadratic functions of the generalized impulses, 

and formulates the following theorem : the Jacobi theorem can be used for a nonholono- 
mic system if and only if the normal Jacobi equation can be supplemented with a func- 
tion cp such, that Ri are its partiaf. derivatives with respect to the coordinate ziF The 
author also assumes that rp is a function of the coordinates and impulses of the system. 
No examples are given to illustrate the theorem. Paper 131 gives a similar theorem for 
nonholonomic systems with nor&near constraints f, (b, xi, $1 = 0. The equations of 
motion of these systems are written with the help of undetermined multipliers in the 

form (1.1) where a/a 
Ri xz h, - 

as z 

under the assumption that the constraints are of the Appel-Chetaev type. All this having 

been said, it can easily be shown that the theorem quoted above holds in neither of these 

two cases. 

Indeed, suppose a function ‘p exists such that 

and 

yield a complete system of solutions of (1.1) provided that V (t, &, ai) is a general 
integral of the equation 

$- .f- N -t_ 9p f 0 (1.4) 

We shall show that these assumptions lead to a contradiction. Differentiating both parts 

of the first group of equations (1.3) with respect to time and taking into accouut the 

first group of equations in (1. l), we obtain 

d”V aav aff ----F--_-L~-~o 
aaz8t ’ adad aPj - 

(1.5) 

Differentiating now the left hand side of (1.4) with respect to ai under the assumption 
that the general integral V has been inserted into that expression and taking into ac- 

count the second group of equations (1.3), we obtain 

apv y _” 
EVaa’ 

t 
a(H-i-9) a.“v’. __o 

aPj 3x3aa1 - 
6.6) 

Subtracting (1.6) from (1.5) yields the following system of n linear homogeneous equa- 
tions a9 a& ------F-F~:o 

dPj i)s3da’ (I.71 

*) The indices used assume the following values: i, j = 1, . . . . n; k, s = 0, 1. . . . . n; a7 
p = 1, . ..) m; v, y := 0, i, . . . . m; tr == m -/- I,.., 11. Repeated indices denote summation. 
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in n functions dvIdpj* But Y is a general integral of (1.4), hence 

and from (1.7) we obtain 

(f.8) 

i.e. the function 9, contains no impulses pp Differentiating (1.2) and (1.8) with respect 

to pi and zi respectively, we find that aR, 

i. e. Ri also contain no impulses pj. 
But the quantities Xi depend essentially on the impulses for both the linear and the 

nonlinear constraints. The contradiction obtained proves the statement given above. 

2. In [4] we find a perfectly correct and fully substantiated assertion that the Hamil- 
ton-Jacobi method cannot, in general, be applied to nonholonomic systems, although some 
nonholonomic systems exist, the equations of motion of which can either be directly 

integrated using the Hamilton-Jacobi method, or the method can be applied after the 
equations of motion have been somewhat transformed. The paper gives also the neces- 
sary and sufficient conditions for the partial applicability (the term is explained at the 

end of Sect.2) of the method to nonholonomic systems with linear differential constraints, 
the equations of motion of which are written in the form of the Ferrers equations with 

constraint multipliers. We shall now derive the analogous conditions for a more general 
case of the equations of motion of nonholonomic systems, written in the PoincarC-Cheta- 

ev variables. 
Let the position of the mechanical system be determined by the variables x1, . . . . 3-l’. 

We define the infinitesimal displacements of the system by means of a set of indepen- 

dent operators 

in such a manner.that the variation of an arbitrary function F (&) over a real (possible) 
displacement of the system is determined by the equation 

dt: = tJV_X,Fdz” (6F = &X&F), QO =z 5’0 = 1 (2.‘)) 

The independent parameters $ (0”) characterize the real (possible) displacements of 
the system and their number is equal to the number of degrees of freedom of the system. 
We assume that the operator set (2.1) is not closed. This means that the corresponding 

system of Pfaffian forms is not integrable. Since these forms are equated to zero, they 

represent the differential nonintegrable constraints of the system, and under the assump- 
tion made the system considered is therefore nonholonomic. Applying the formulas 
(2.1) and (2.2) for the functions Pk = zk we obtain 

z’h’ = &“‘$ (2.3) 

Since the operators (2.1) are independent, it is possible to cut out from the matrix 
11 .&E/I , a quadratic (m + 1) X (m i- i) matrix whose determinant is not zero. Let 

If g,,’ I[ be this matrix. Then the first m + 1 equations of (2.3) yield 

11“ z b.<‘ZX y (2.5) 

Inserting these expressions into the remaining n - m equations of (3,3), we obtain the 
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following equations for the differential nonintegrable constraints of the system 

5 
-a = Byax’Y (2.5) 

Let L (xk, x’~) be the Lagrangian function for a constraint-free system and L’ (d, qa) 
a Lagrangian function expressed with the help of (2.3) in terms of the independent para- 

meters. Introducing the Hamiltonian function -7, 
H’ = y,f - L’, ya = s 

we can write the equations of motion of the system in the form ( l ) 

Y,’ = - X,H’ + qv [%, (s)* - &g] I 11” = F (2.6) 

which can easily be transformed into 

ya = - X,H’ + qy (X,E,~ - X&i) 3 , 
( > 

* aH’ 
- qa = ay, 

(2.8) 

The notation with an asterisk ( )* indicates that the corresponding functions are writ- 

ten in the variables zi and Y,. Equations (2.6) and (2.8) differ from the well known 

equations of motion in nonholonomic coordinates [l] only in the manner of notation . 

The method of nonholonomic coordinates and the method of the Poincar&Chetaev 
variables are in fact identical, only the terminology is different. In this paper we prefer 
to use the PoincarC-Chetaev terminology, since their concepts have a definite mechani- 

cal meaning. 
Let us write the equation 

SUV + H’ (xk, X,V) = 0 (2.9) 

(which is due to Chetaev [5]) and prove the following theorem. 
Theorem. If an integral 1’ (rh’, ah) of Eq. (2.9) containing a number of arbitrary 

nonadditive constants ah (h = 1, . . . . 1) and satisfying the conditions 

(X,Li 
exists. then the eauations 

= x,v, av 
?/, ), = b, = const 

da 

(2.10) 

(2.11) 

represent the integrals of canonical equations of motion. The quantities ya appearing 
in the functions (aL/ax i)* in (2. lo), are supposed to be replaced by X,V in accordance 
with the first group of equations (2.11). 

Proof. Assume that the integral V of (2.9) satisfying the conditions of the theorem 

has been found, We shall show that the time derivatives of the first group of equations 

in (2.11) can be reduced to identities by virtue of (2.8) (or (2.6)), of (2.10) and of the 

equations themselves. Differentiating both parts of the equations indicated, with respect 
to time, and taking into account the first group of equations in (2.8) as well as the rela- 
tion (X X)V=(XE i-x Ei) a; 

Y’ a “cc GY f3Xz 

*) See the dissertation of E. Kh. Naziev, Some Prbblems of the Analytic Dynamics, Izd. 
MGU, 1969. 
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we obtain 

x,“‘-‘l’{x,x,v+(x”~,‘-xx,~,‘) [s-(.$)*]}=o 

Since V is the integral of (2.9) satisfying the conditions of the theorem, the second 

terms within the brackets in each of the equations obtained vanish identically. There- 

fore, using the second group of equations (2.8) and the first group of equations (2.11). 
we obtain 

X,X$ + X,li’ + 
a H’ 

a (X,V) 
x,xpv = 0 

But the latter are identities since they are obtained by applying the operator X, to the 

left-hand part of (2.9) into which the known integral V has been inserted ; QED. 
We shall now show that, when the conditions of the theorem hold, the time derivatives 

of the left-hand parts of the second group of equations in (2.11) vanish identicallv by 

virtue of (2.8) and the first group of equations in (2.11). By (2.8) we have 

d aV 8V aH’ av 
dx aah = xo 2% f aya X@z o- 

Since V is the integral of (2.9) satisfying the conditions of the theorem, the first group 

of equations in (2.11) holds in accordance with the first part of the proof. Therefore, if 
we assume that the order in which the operations X, and a/&” are performed is imma- 
terial, the previous equations can be rewritten in the form 

d3V 8 ---- 
dx” aa). - aa” XOV + 

But the right-hand sides of the latter equations are identically zero since they represent 

the partial derivatives with respect to aA of the left-hand part of (2.9) in which V has 
been replaced by the known expression. Therefore 

d ifV 

QED. 
It can be shown that Eqs. (2.10) are satisfied identically if the system is holonomic 

(the set of operators (2.1) is closed). Then the knowledge of the general integral of 
(2.9) makes it possible to obtain a general solution of the problem. If on the other hand 
the system is nonholonomic, then the problem reduces to investigating the consistency 
of the system (2.9) and (2.10) of first order partial differential equations. In many cases 
the system is not consistent. When the consistence occurs, the general solution of the 

problem cannot, generally speaking, be obtained. One can therefore speak only of par- 
tial applicability of the Hamilton-Jacobi method of integration to nonholonomic systems. 

8. Nonhobnomic systems whose equations of motion can be directly integrated using 
the Hamilton-Jacobi method, exist. These are the Chaplygin-type systems for which 

in the equations of motion (X.6). This may occur when sZ& # 0 for a certain structure 

of the Lagrangian function L. We shall show, that in such cases the system (2.9) (2.10) 
is always consistent. Indeed, in such a case (2.10) can be reduced to the form 
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The latter equations are satisfied by any function Y which is independent of variables 
8. Since these variables do not enter the coefficients of (2.9). we can neglect the terms 

in the operators (2.1) containing partial derivatives with respect to these variables aud 
write (2.9) in the form 

After the general integral of this equation has been determined. solution of the problem 

can be reduced to algebraic operations and to determination of the functions 8 (t) from 

(2.5) by means of quadratures. Obviously the solution thus obtained is a general one. 

Note, It should not be presumed that an analogous situation exists for the Chaplygin- 

type equations in the case when in Eqs.(2.S) 

In this case Eqs.(2.10) are written in the form 

and the compatibility of the latter with (2.9) is not implied anywhere. 

4. Bxample. Let us consider a motion of a sharp-edged homogeneous disc of radi- 
us a on a horizontal plane. Let OEqc be the fixed coordinate system, theOE-and Oq- 
axes lying in the plane and Oc-axis pointing vertically upwards. We adopt the O,xyz 
system as the moving coordinate system, with its origin at the disc center. The O~Z-axis 
lies in the disc plane and is parallel to the line of intersection of this plane with the 

Ocq plane, the 0,~ -axis is collinear with the diameter of the disc passing upwards through 
its point of contact with the plane,and the 0,~ -axis is perpendicular to the disc plane. 
The following variables serve to determine the position of the disc: the E, 11 and 5 

8 

coordinates of the center of the disc in the Ogqc system, the angle 8 between the O1z - 
axis and the vertical passing through the disc center, the angle $ between the 05 -axis 

and the line of intersection of the disc plane with the O@l plane and the angle cp formed 
by some fixed radius of the disc and the 0,x -axis. 

The Lagrangian function and the equations of differential constraints have the form 

& = '/2na (\'2 + Tjd + 5'") +*/*A (W2 + 9'" sin? 0) + l/~C (cp +$’ co9 Qz - mga sin \! 

~'=a(O'sin~sinO-_g'cos\I)cosO-_ cosy) 

q'=--u(Wcos~sinO+$'sin~cos9+cp'sin$) 

5' - a0’ cos 8 

The last constraint equation can be integrated. Eliminating 5’ from L, we obtain 

L = 'l2m (4'2 + rl") + '/2 (A -I- mu2 cos2 0) 8’” + l/p4$‘2 sina 0 + l/2C (cp’ + I#’ cos e)? - 
- mga sin 0 

Let us choose the following quantities as the parameters defining the real displacement 

of the disc ‘11 = O’, Tjz = 11’ sin 8, ‘13 = cp’ + +* cos 8 

Then 
2.1 = 0’ = q’, 5’” = $’ = -& , z'2= up = q - q2ctg e 

2'4=~'=a(~j~sin+sin8--q~cos~) 

~'~=q'=--u((rl~cos$sin0+q~sin$) 

The infinitesimal disc displacement operators have the form 
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In the independent variables the Lagrangian function L becomes 

and the Hamiltonian function has the form 

Since the system under consideration is scleronomous, the function V = -ht + W satis- 

fies (‘2.9). The partial differential equation in w is written in the form 

--acosa,af--asrngz + 2mga sin 0 = 2h (4.1) 

The system (2.10) consists of a single equation 

The other two equations are identities and are, in general, inconsistent. 

Let us consider a particular case when dW/de = 0, corresponding to the motion in 
which %’ = 0, % = h = const. Then the system (4, l), (4.2) is satisfied by the function 

W independent of E and r and the problem reduces to finding the general integral of 

=2(h- mga sin hj 

This integral has the form W = a$ i_ f3’p where a and p are constants connected bet- 

ween themselves and related to the constant h by the equation 

are the integrals of the system, The functions 5 (t). and v (tj are obtained from the 
above expressions for 5’ and 7’ by means of quadratures. 

The particular solution obtained corresponds to a motion in which the variables II, 
and cp vary linearly with time, while 5 and q vary periodically with time. Since 8 = 
coast, the &z -axis describes a cone of revolution about the vertical passing through the 
disc center. consequently the particular solution obtained corresponds to a uniform cir- 
cular rolling of the disc. The latter case is discussed in detail in [6]. 
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The sufficient conditions are established for the existence of a stable limit 

cycle for systems of the form 

2’ = y, y’ = - g (5) - fo (2) y - . . . - fn (5) yn 

for n = 2 and n = 2m. f 1. The conditions of the theorem of existence and 

uniqueness of the solution are assumed to hold. 

1. Consider the system 

2’ = y. Y = -Y Vl (4 ?/ + fo (41 - g (4 (I.11 

introducing the notation 

r (5) = 2 ‘c F12 (x) g (5) dx +- f 1;‘, (a) F (L) fo (5) dx 

‘0 '0 

Q (2) = r (x) - - 2 Fz(x). 

Theorem 1. System (1.1) has at least one stable limit cycle, provided that the 
following conditions hold : 

1. Numbers a < b < 0 < c < d and h > 0 exist such, that the functions F (2) 
and c” (T) have the following consecutive signatures : 

g(z)<0 for xE(a,O), g (2) > 0 for z E (0, d) 
F(z)<0 for s~(a,b), F(x)>0 for s~(b,O) 
F (2) < 0 for z E (0, c), F (I) >0 for x E (c. d) 


